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A ground-based multisensor cloud phase classifier
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[1] A method for classifying cloud phase from a suite of
ground-based sensors is outlined. The method exploits the
complementary strengths of cloud radar, depolarization
lidar, microwave radiometer, and temperature soundings to
classify clouds observed in the vertical column as ice, snow,
mixed-phase, liquid, drizzle, rain, or aerosol. Although the
classification has been specifically designed for
observations of Arctic clouds, the general framework is
applicable to other locations with minor modifications. An
example classification demonstrates the application to
actual measurements. Citation: Shupe, M. D. (2007), A
ground-based multisensor cloud phase classifier, Geophys. Res.
Lett., 34, 122809, doi:10.1029/2007GL031008.

1. Introduction

[2] Cloud phase identification is a necessary prerequisite
to performing cloud property retrievals from remote sensor
measurements. Most retrieval algorithms are specifically
developed and tuned for clouds of a particular phase and
type. Thus a cloud phase classifier is a crucial component to
any operational algorithm for deriving cloud properties at all
times and heights above ground-based atmospheric observa-
tories, such as those associated with the DOE Atmospheric
Radiation Measurement (ARM) and NOAA Study of
Environmental Arctic Change (SEARCH) Programs. For
the ARM program in particular a major programmatic
objective is to compute accurate radiative heating rate pro-
files above its ARM Climate Research Facilities (ACRF).
Such an endeavor is only possible with a reliable cloud
microphysics product which relies on a robust cloud phase
classification algorithm.

[3] There have been a number of cloud classification
methods proposed using satellite measurements based on a
variety of sensors and classification frameworks [Welch et
al., 1992; Tovinkere et al., 1993; Luo et al., 1995; Rossow
and Schiffer, 1999; Hu et al., 2001]. To a lesser degree,
ground-based classification algorithms have been explored.
In particular, methods using pyranometers [Duchon and
O’Malley, 1999], spectral infrared interferometers [ Turner et
al., 2003], and combined active and passive sensors [ Wang
and Sassen, 2001] have been suggested. Classification
methods are based on neural networks [Miller and Emery,
1997; Bankert, 1994], fuzzy grade-of-membership systems
[Baum et al., 1997; Shao, 2000, Talbot et al., 1999] and
pattern recognition systems [Ebert, 1987]. Others are based
on crisp, or fixed, threshholds between various parameters
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such as optical depth and cloud top pressure/temperature
[Rossow and Schiffer, 1999]. Most methods are oriented
towards a classification of meteorological cloud types
[Bankert, 1994; Ebert, 1987; Rossow and Schiffer, 1999;
Wang and Sassen, 2001] such as cumulus, stratus, or
altostratus, although such classifications are of limited use
for the subsequent application of cloud property retrievals.
[4] Here, a method is presented to classify cloud hydro-
meteor phase in the vertical column above intensive Arctic
atmospheric observatories, such as the ARM and SEARCH
sites, from a set of key measurements. The classifications
are not meteorological in nature, but rather are specifically
tailored to determine the vertical distribution of hydrome-
teor phase to facilitate subsequent phase-appropriate cloud
microphysics retrievals. Furthermore, this type of classifi-
cation has application towards the assessment of model
simulations, where condensate is partitioned by phase, not
by meteorological cloud type. The classes considered here
include: liquid, drizzle, liquid+drizzle, rain, ice, snow,
mixed-phase, and aerosol (defined in Table 1). This classi-
fication algorithm represents the manifestation of a manual
cloud classification based on a combination of sensors
[Shupe et al., 2005] into a consistent, rule-based framework.
While many of the rules, or thresholds, employed in the
algorithm are based on physical principles and/or previous
studies, some have been subjectively tuned based on exten-
sive experience with seven years of multisensor observa-
tions to produce realistic, self-consistent classifications.

2. Instruments and Measurements

[5] Necessary measurements for the cloud phase classi-
fier include those from depolarization lidar, cloud radar,
microwave radiometer, and radiosondes. While other instru-
ments can contribute further insight into the characterization
of cloud phase, these four provide a sufficient level of
information. A multisensor approach is necessary in cloud
classification since no one instrument can unambiguously
classify cloud phase for all clouds at a given site under all

Table 1. Cloud Phase Type Classes

Class Description
Ice Only cloud ice particles
Snow Only snow particles (defined based on a reflectivity
threshold which is related to particle size)
Mixed-phase Cloud liquid droplets and cloud ice particles in the
same volume
Liquid Only cloud liquid droplets

Liquid-+tdrizzle Cloud liquid droplets and drizzle drops in the

same volume

Drizzle Only drizzle drops (defined based on a reflectivity
threshold which is related to drop size)

Rain Only rain drops (defined based on a Doppler velocity
threshold which is related to drop size)

Aerosol Only aerosol or haze particles but no cloud particles
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Figure 1. Case study example from 10 September 2006 at
the NOAA SEARCH atmospheric observatory of (a) lidar
backscatter, (b) lidar depolarization ratio, (c) radar reflec-
tivity, (d) radar mean Doppler velocity, (e) radar Doppler
spectrum width, (f) microwave radiometer-derived liquid
water path, and (g) the resulting multisensor classification
mask.

conditions. These basic sensors nicely complement each
other in order to accomplish a generalized classification for
all cloud phase types.

[6] Depolarization lidars, such as the High Spectral
Resolution Lidar [Eloranta, 2005] or micropulse lidar
[Campbell et al., 2002], measure backscatter intensity ()
and depolarization ratio (6), the combination of which
results in a robust hydrometeor phase classification for
nonocculted volumes. Lidar measurements are particularly
useful for identifying the lower boundaries of clouds, and
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especially the base of cloud liquid layers. Visible wave-
length lidars, however, suffer from attenuation in optically
thick clouds, which often precludes observation of the full
vertical atmospheric column. Furthermore, in some cases
containing both large, precipitation-size particles (ice, driz-
zle, or rain) and numerous, small liquid cloud droplets, the
stronger signal from cloud droplets may prevent the coin-
cident identification of the larger particles.

[7] Cloud radars operating near 35- or 94-GHz, such as
the Millimeter Cloud Radar (MMCR) [Moran et al., 1998],
provide measurements of the Doppler spectrum, and its first
three moments, the reflectivity (Z.), mean Doppler velocity
(Vp), and Doppler spectrum width (Wp). Under most
conditions, except for heavy rain, attenuation is minimal
such that cloud radars sense cloudiness throughout the full
atmospheric column. However, since reflectivity is propor-
tional to the sixth power of the particle size, radar signals
are dominated by the largest particles in a volume and thus
have a lower sensitivity than lidars to the smallest particles.
Radars may therefore miss some cloud fringes or tenuous
cloud layers that contain small particles. Moreover, it is
difficult, based on reflectivity alone, to distinguish ice
clouds from mixed-phase clouds, in which ice particles
are typically larger than liquid droplets and thus dominate
the radar signal. Some signatures for making this distinc-
tion, however, may be available from mean Doppler veloc-
ity and/or Doppler spectrum width fields [e.g., Shupe et al.,
2004, 2006].

[8] Estimates of column-integrated liquid water path
(LWP) are available from multichannel microwave radiom-
eter (MWR) [Liljegren et al., 2001; Turner et al., 2007], and
spectral infrared retrievals [Turner, 2007], among others. A
positive LWP indicates liquid water, in some form, in the
vertical atmospheric column; however, it does not vertically
distribute that liquid water. LWP retrievals from MWR have
an uncertainty of ~25 g/m?> [Westwater et al., 2001], which
places a great deal of uncertainty on liquid water identifi-
cation in clouds with low liquid water amounts. This
shortcoming can be improved upon by employing the latest
absorption models [e.g., Turner et al., 2007], by combining
infrared and microwave measurements [7urner, 2007], and/
or by adding higher-frequency channels to the retrieval
[Crewell and Lohnert, 2003].

[¢] Temperature (T) soundings also provide crucial sup-
porting information under certain circumstances. In partic-
ular, the —40°C homogeneous freezing and 0°C melting
temperatures impart unambiguous constraints on the classi-
fication. However, over the range of —40 to 0°C, most
cloud phases can exist. Measurements from an infrared
thermometer, although not necessary, could provide an
additional constraint on cloud base temperature for the
classification.

3. Classification

[10] To illustrate the classification algorithm, a sampling
of measurements from a case study on 10 September 2006
at the NOAA SEARCH site in Eureka, Canada (80.00°N,
85.81°W) is used (Figure 1), resulting in the classification
mask in Figure 1g. This case contains three levels of
cloudiness — low (<1 km), mid-level (2—4.5 km), and high
(>4.5 km). The basic steps to the classification are outlined
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Table 2. General Steps to the Classification Process
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Step Application

Details

—_

. Lidar mask
. Modify lidar mask w/radar
3. Precip mask w/radar and T

Lidar-viewed pixels
Lidar-viewed pixels
All pixels

NS}

4. Complete mask
5. Absolute T rules

Pixels not viewed by lidar
All pixels
6. LWP constraint All columns of pixels

7. Homogenize All pixels

Figure 2a provides liquid, ice, aerosol classes

Add mixed-phase, drizzle, snow classes
Z.>5dBZ & T < 0°C = snow
Ze>5dBZ & T > 0°C = rain

Vp >2.5m/s & T > 0°C = rain

Figure 2, including lidar occultation layer classification
T < —40°C = ice

T > 0°C = [liquid, drizzle, rain]

If LWP < 0 g/m?, then liquid pixels to ice

If LWP > 25% g/m? then find liquid layer

7 x 7 surrounding pixel box

a)>35 clear pixels in box: pixel = clear

b)>7 pixels of given type in box: no change

¢)<7 pixels of given type in box: change to dominant type
d) Additional rules

“The value should be the uncertainty of the specific LWP estimate.

in Table 2 and described here in order. Order is important
because some classifications rely upon cumulative informa-
tion from multiple sensors.

[11] An initial classification is made from lidar measure-
ments using the scheme in Figure 2a where all pixels
observed by the lidar are classified as liquid, ice, or
aerosol. Cloud liquid is identified by high lidar backscatter
and low depolarization ratio [e.g., Sassen, 1984; Intrieri et
al., 2002], as are present in both the low-level cloud layer
and at the top of the mid-level cloud near 4 km in Figures
la and 1b. High backscatter is due to the high total surface
area associated with typical populations of cloud droplets,
which are small and exist in relatively high concentrations.
In addition, spherical particles, which are typically liquid,
do not significantly depolarize the lidar beam, resulting in
very small depolarization ratios (<0.1). On the contrary,
nonspherical ice crystals, which are usually larger than
liquid droplets and occur in smaller concentrations, highly
depolarize the lidar signal, and often have less backscatter
than water droplets. By these criteria (Figure 2a), ice is
indicated below about 4 km in the mid-level cloud layer
and near the surface below the low-level cloud layer in
Figures la and 1b.

[12] The lidar classification is modified in step 2 based on
additional information from radar. If the lidar identifies a
time-height pixel as aerosol but the radar has a measurable
reflectivity, the pixel is reclassified as a cloud, since cloud
radars cannot observe aerosol-size particles. In addition, if
pixels are identified by the lidar to be liquid, but the radar
reflectivity or mean Doppler velocity are larger than the
expected ranges for liquid droplets only [Z. > —17 dBZ
[Frisch et al., 1995] or Vp > 1 m/s], the pixel is reclassified
as liquid-+drizzle (T > 0°C) or mixed-phase (T < 0°C). A
reclassification from liquid to mixed-phase was necessary in
some regions near the top of the mid-level cloud in this case
(i.e., 2300—2400) as a result of high reflectivity (Figure 1c).

[13] The radar observations are then used to identify
periods of unambiguous, strong precipitation (step 3 in
Table 2). Based on comparisons between radar observations
and surface precipitation measurements, all pixels with Z, >
5 dBZ are classified as snow (T < 0°C) or rain (T > 0°C).
All above-freezing pixels with Vp > 2.5 m/s are classified as
rain, since no other Arctic hydrometeors fall at those high

speeds. These criteria are applied to all pixels, including
modifying those that have already been initially classified
by the lidar.

[14] In step 4, since the lidar beam is occulted by
optically thick cloud layers but the radar is usually not
significantly attenuated, the information from the radar,
augmented by radiosondes, completes the classification
above the level of lidar occultation (e.g., above 0.5 km
prior to 1800 and above 4.2 km after 1800 in Figure 1).
Pixels at temperatures above freezing can only be a non-
frozen class, and are distinguished by reflectivity and
velocity thresholds (Figure 2b). At temperatures below
freezing, more classifications are possible and the Doppler
spectrum width is utilized. The spectrum width is generally
wider when there are multiple phases or when turbulence or
wind shear is significant, whereas narrower spectrum widths
are most often associated with a single phase of hydro-
meteors under quiet conditions. For narrow widths (Wp <
0.4 m/s), snow is distinguished from cloud ice by high Z.
(Figure 2d), resulting in an ice classification for the upper-
level cloud observed from 2200—-2300. When W > 0.4 m/s,
mixed-phase clouds are characterized by higher Z. and Vp
than liquid-only clouds because they contain larger particles
(Figure 2c¢). The mid-level cloud from 1500—1800, which is
not observed by lidar, demonstrates this type of classification
based on radar and temperature alone.

[15] The requirement that liquid-only cloud layers have a
relatively wide spectrum width is based on experience with
multisensor observations of Arctic clouds, but may mis-
identify some non-turbulent liquid layers that have narrow
spectrum widths as ice. Furthermore, there are some cases
where the spectrum width threshold may suggest mixed-
phase conditions when only ice is present, which may be the
case for portions of the mid-level cloud classification during
1500—-1800. While it is sometimes difficult for the radar to
accurately determine the thickness of mixed-phase layers in
the absence of lidar measurements, the ability of the radar to
identify mixed-phase layers at all is of great importance
when lidar measurements are obscured.

[16] An additional component of step 4 considers clouds
that are immediately above the location of lidar occultation.
Occultation of the lidar signal typically occurs within a
liquid layer, suggesting that cloud liquid extends above the
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Figure 2. Classification diagrams. (a) The initial classifi-
cation based on lidar backscatter and depolarization ratio
measurements only. Radar measurements for the subset of
data with (b) T > 0°C, (¢) T < 0°C and Wp > 0.4 m/s, and
(d) T < 0°C and Wp < 0.4 m/s. All radar panels contain
shading in regions that do not often occur. All thresholds
have been defined based on extensive experience with seven
years of multisensor observations.
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point of occultation. However, without supporting lidar
measurements the radar may not correctly identify these
cloud-top liquid layers. When radar identifies a cloud top no
more than 750 m above the point of lidar occultation and
T < 0°C, the scheme in Figure 2c is applied to distinguish
liquid and mixed-phase clouds, regardless of spectrum
width. This circumstance comes into play near the very
top of the mid-level cloud just above the point of lidar
occultation, where some regions have spectrum widths less
than 0.4 m/s and would thus be classified as ice.

[17] At this point in the classification there is a full time-
height cloud phase mask based solely on information from
the lidar, radar, and temperature soundings which can be
further constrained by other supporting measurements. First
absolute temperature rules (step 5 in Table 2) can be applied
which allow only ice or snow at T < —40°C (the homoge-
neous freezing temperature) and only liquid phase hydro-
meteors at T > 0°C. In this case (Figure 1g), all clouds
above 7 km (the height of —40°C) are ice phase.

[18] While the above constraint does not usually contrib-
ute much additional information, a LWP constraint (step 6)
can significantly impact the classification. Due to the
radiative significance of liquid water in Arctic clouds
[e.g., Shupe and Intrieri, 2004], a LWP constraint of this
fashion is imperative if the cloud classification product will
contribute to computations of atmospheric radiation pro-
files. If LWP < 0 g/m? indicating the absence of cloud
liquid, and T < 0°C, all liquid-containing classifications in
the vertical column are set to ice. On the contrary, if LWP is
greater than the LWP retrieval uncertainty (~25 g/m> for a
typical, two-channel MWR) indicating the presence of
liquid water, but no liquid-containing class has been iden-
tified, a liquid layer must be specified. If a cloud base is
identified by lidar, a liquid layer is classified immediately
above that base, otherwise the liquid is assumed to start at
the lowest observation height. The liquid layer depth
extends up to an identified cloud top that is within 500 m
or over a depth that provides an average liquid water content
of 0.2 g/m’.

[19] The final classification step (step 7 in Table 2) is a
coherence filter which acts to decrease the pixilation, or
speckle, in a classification and to apply some conditional
rules. For each classified pixel, the surrounding 7 x 7 pixel
box (in time-height space) is considered. If more than 35 of
49 pixels are classified as clear, then the central pixel is set
to clear. If the central pixel is not set to clear and there are
more than 7 of 49 pixels with the same type as the central
pixel, it is left unchanged. Otherwise, the central pixel is set
to the classification type that is most plentiful in the box.
For each pixel, the filter is applied to the original unfiltered
classification mask to negate the dependence on order.
Some rules can also be applied to avoid certain erroneous
classifications: 1) Thin (<200 m) “ice” layers directly
above mixed-phase (or liquid) layers are reclassified as
mixed-phase (or liquid); 2) drizzle classified above cloud
liquid causes the liquid to be reclassified as drizzle; and 3)
ice (or mixed-phase) classified above and below drizzle
causes the drizzle to be reclassified as ice (or mixed-phase).

[20] Uncertainties in this classification method are related
to the fixed thresholds specified in Figure 2 which in some
cases might be better implemented in a probabilistic frame-
work, to temperature variability that is not captured by
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periodic radiosondes, and to the individual measurement
uncertainties, particularly the estimate of LWP. At present
there does not exist an independent cloud phase data set
appropriate to validate these classifications. While frequent,
unambiguous agreement regarding cloud phase among
multiple instruments does act to verify the classifications,
an objective quantification of the uncertainties is desired.
This validation might be accomplished in the future using
modeled clouds and instrument/measurement simulators.

4. Conclusions

[21] A cloud phase classification algorithm has been
presented which provides a phase type for all clouds
observed above an atmospheric observatory containing
cloud radar, depolarization lidar, microwave radiometer,
and radiosonde measurements. The algorithm combines
information from these complementary measurements to
identify cloud volumes by their phase components. Result-
ing classification masks can then be used to correctly apply
cloud microphysics retrievals using remote sensors or to
study the morphology of cloud types at a given location.

[22] The classifier introduced here has been specifically
developed for observations of Arctic clouds. A similar
approach could be applied to cloud observations at other
locations, although detailed analysis of long data records
and a thorough understanding of cloud measurements are
required in order to determine the appropriate threshold
parameters for the given location. Furthermore, although it
employs multiple measurements, this classification might
still be considered simplistic since it is based on fixed
thresholds between parameters and cloud phase types. A
logical extension of this method is to apply neural networks
or fuzzy logic systems that are trained using these results.
Such advances might further improve the classification for
some of the borderline phase types such as warm mixed-
phase cloud versus cold drizzle.
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